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LIMITED VIEW RESOLVING POWER OF CONDUCTIVITY

IMAGING FROM BOUNDARY MEASUREMENTS

HABIB AMMARI, JOSSELIN GARNIER, AND KNUT SØLNA

Abstract. In this paper we consider resolution estimates for a linearized in-
verse conductivity problem with limited-view data. Our purpose is to precisely

describe the effect of the limited-view aspect on the resolving power of the mea-

surements in the presence of measurement noise. We first show that, in the
shallow probing regime, where the inclusion is close to the boundary of the

background medium, we can resolve for any signal-to-noise ratio a sufficiently

shallow perimeter perturbation of a conductivity inclusion on the overlap of
the source and receiver apertures. Then we provide explicit formulas for the

modes that can be resolved and the resolution measure for a given signal-to-
noise ratio in the deep probing regime, where the radius of the inclusion is

small.

1. Introduction

This paper is the continuation of [6] where we have introduced for the first
time the notion of resolution in solving the inverse conductivity problem with mea-
surement noise in the full aperture case. The problem is to image inclusions in a
background medium from boundary measurements. It lays a mathematical founda-
tion to electrical impedance tomography, which is a method of imaging the interior
of a body by measurements of current flows and voltages on its surface. On the
surface one prescribes current sources (such as electrodes) and measures voltage
(or vice versa) for some or all positions of these sources. The same mathematical
model works in a variety of applications, such as breast cancer imaging [9, 23] and
mine detection [16].

In [6] we have indeed shown that on the one hand, we have “infinite resolution” in
the near-field limit and on the other hand, the relative resolution decreases rapidly
with the “depth” of the conductivity inclusion. We have also given estimates for
the sensitivity of the linearized inverse conductivity problem to noise.

Our main objective here is to go further and precisely describe the effect of
the limited-view aspect on the resolving power of the noisy measurements. We
consider here imaging of a perturbed disk-shaped inclusion in the conductivity
case. We impose non zero currents on part of a background medium (a concentric
disk) containing the perturbed disk and collect the boundary voltage perturbations
on another (possibly the same) part of the boundary. We distinguish two important
regimes: the shallow probing regime (also called the near-field regime), where the
inclusion is close to the boundary and the deep probing regime, where the radius
of the inclusion goes to zero.
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We first observe that the data in the limited-view case can be expressed as a
function of the data in the full-view case using source and receiver filters. We then
show that, in the shallow probing regime, we can resolve for any signal-to-noise
ratio a sufficiently shallow perimeter perturbation of a conductivity inclusion on
the overlap of the source and receiver apertures. Therefore, we have in this case
“infinite resolution” on the overlap of the source and receiver apertures. In the
deep probing regime, i.e., when the radius of the inclusion is small, we provide a
constraint on the number of modes that can be estimated for a given signal-to-noise
ratio (SNR). For doing so, we use a filtering approach. Because of the limited-view
configuration, it is in general critical to use an inverse filter with off-diagonal terms.
We use a matrix filter to estimate the lowest modes of the perimeter perturbation
in the situation with a small inclusion. We also show that the estimations of the
high modes are more sensitive to measurement noise than those of the low modes.

In connection with our results, we refer in particular to the works by Isakov [19],
Ide et al. [17], and Alessandrini and Di Cristo [3] on reconstructing conductivity
inclusions. For further discussions on the stability of the inverse conductivity prob-
lem, see for instance, [2, 9, 10, 12, 13, 20]. As far as we know, our formulas for the
resolving power of limited-view measurements in terms of the SNR are new. They
provide a deep understanding of the ill-posed nature of the inverse conductivity
problem and precisely quantify the effect of the limited-view aspect on the quality
of the reconstructed conductivity images. Recently, there has been a lot of work
done on the inverse conductivity problem in the limited-view case [15, 22, 18, 24].
Our results also clarify the connection between the full- and the limited-view cases.

The paper is organized as follows. In section 2 we formulate the reconstruction
problem of interest. Our goal is to estimate the shape perturbations of a disk-
shaped inclusion from limited-view boundary measurements. We use an asymptotic
characterization of the effect of small shape changes on boundary measurements to
get an explicit form of the map from the shape perturbations to the boundary data.
In section 3 we describe different strategies for solving the reconstruction problem
from limited-view data. Section 4 is devoted to the regime where the interface of the
conductivity inclusion is located just below the boundary of the background domain.
We provide an inverse filtering approach to estimate the shape perturbations and
prove that we can resolve for any fixed SNR a sufficiently shallow shape perturbation
on the overlap of the source and receiver apertures. In section 5 we consider the
case where the inclusion is small and perform a matrix filtering approach to get the
lowest modes of the shape perturbation in this case. It is worth mentioning that a
filtering approach with a diagonal scaling would not work in this case because of a
mode coupling. A reasonable inverse filter should include off-diagonal terms in this
case and therefore should be a matrix one. The paper ends with a short discussion.

2. Interface Estimation with Limited-View Data

In this section we formulate the reconstruction problem in the case of limited-
view noisy conductivity data in the two-dimensional case. We contrast this process
with estimation based on full-view measurements and find the connection between
the full- and the limited-view cases. For simplicity, we consider inclusions with
constant conductivities and image only small changes in their shapes.

2.1. Differential Measurements. The partial measurements are taken on a cir-
cle of unit radius in our non-dimensionalized setting. The domain of interest,
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encapsulated by the measurements, is thus

Ω =
{
x = reθ | r ≤ 1, −π ≤ θ < π

}
,(1)

where eθ = (cos θ, sin θ). Imbedded in the domain there is a homogeneous inclusion
centered at the origin and with the shape of a perturbed circle. Our objective is to
estimate the rim of the inclusion. We denote the domain of the unperturbed disk
by D and the perturbed domain by Dε:

D =
{
x = reθ | r ≤ α, −π ≤ θ < π

}
,(2)

Dε =
{
x = reθ | r ≤ α+ εh(θ), −π ≤ θ < π

}
.(3)

We let here h to be of order one and assume that h is of class C1 and ε� 1.
A central point of our analysis will be to consider partial aperture. We re-

fer to [6] for the full aperture case. The source aperture is parameterized by
(cos(θ), sin(θ)); θ ∈ (−φs, φs) and the receiver aperture is parameterized by
(cos(θ), sin(θ)); θ ∈ (φc − φr, φc + φr).

For analysis of the case with partial measurements it will be convenient with a
notation for the aperture or source function:

ψφm(θ) ≡
{
e−imθπ/φ , |θ| < φ
0 , else.

Given 0 < φs < π, the field for different source configurations are indexed by
m = 0,±1,±2, . . . and chosen to solve in the perturbed case:

∇ · (1 + (k − 1)χDε)∇umε (x) = 0 , x ∈ Ω ,

with the Neumann boundary conditions at the surface ∂Ω:

∂umε
∂ν

(eθ) = ψφsm (θ) , θ ∈ [−π, π) ,

∫ π

−π
umε (eθ)dθ = 0 .

Here, χDε is the characteristic function of Dε, ν denotes the outward normal to ∂Ω
and the positive constant k is the contrast in the conductivity between the inclusion
and the background.

The field corresponding to the unperturbed domain D is denoted by um = um0 .
The differential measurements are now denoted by

ân,m =

∫ φc+φr

φc−φr
e−in(θ−φc)π/φr (umε − um)(eθ)dθ .

We use the Fourier convention

ĥp =

∫ π

−π
h(θ)

e−ipθ

2π
dθ , h(θ) =

∞∑
p=−∞

ĥpe
ipθ ,

and

ψ̌(p) =

∫ π

−π
ψ(θ)

eipθ

2π
dθ , ψ(θ) =

∞∑
p=−∞

ψ̌(p)e−ipθ .

For the full measurements corresponding to the “full aperture sources” we use the
notation

um,π(θ, r) = um(θ, r) |φs=π , um,πε (θ, r) = umε (θ, r) |φs=π .(4)

The following lemma clarifies the relations between the differential measurements
with partial aperture and the differential measurements with full aperture.
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Lemma 2.1. The differential measurements ân,m corresponding to a source aper-
ture φs and a receiver aperture φr can be expressed in terms of those corresponding
to the full-view case (φs = φr = π), âπn,m, as follows

ân,m =

∞∑
p̃,p=−∞

ψ̌φrn (p̃)ψ̌φsm (p)eip̃φc âπp̃,p ,

where the filters ψ̌φrn and ψ̌φsm are defined by

ψ̌φm(p) =
φ

π
sinc(mπ − pφ) ,(5)

and

âπp̃,p =

∫ π

−π
(up,πε − up,π)(eθ)e

−ip̃θdθ .

Proof. From (4) we have

um(θ, r) =

∞∑
p=−∞

ψ̌φsm (p)up,π(θ, r) , umε (θ, r) =

∞∑
p=−∞

ψ̌φsm (p)up,πε (θ, r) ,

where ψ̌φrn and ψ̌φsm are defined by (5). Note that ψ̌φ0 (0) = φ/π and ψ̌φm(0) =
0 for m 6= 0. With this parameterization we have the following representation of
the measurements (in the absence of measurement noise):

ân,m ≡
∫ π

−π
ψφrn (θ − φc)

∞∑
p=−∞

ψ̌φsm (p)(up,πε − up,π)(eθ)dθ

=

∫ π

−π

∞∑
p̃=−∞

ψ̌φrn (p̃)e−ip̃θeip̃φc
∞∑

p=−∞
ψ̌φsm (p)(up,πε − up,π)(eθ)dθ ,

which completes the proof of the lemma. �

In our analysis we moreover make use of asymptotic characterization of the dif-
ferential measurements to get explicit results on the resolving power of the measure-
ments. This representation uses the results of [8]. We have, for any |n|, |m| � (1/ε),
the representation

âπn,m = εcn,m(α, k)ĥn+m + ε2V̂ πn,m ,

with the coefficients

(6) cn,m(α, k) = −8π(k − sign(nm))

α(k − 1)

1

(α−|n| k+1
k−1 + α|n|)(α−|m| k+1

k−1 + α|m|)
,

if nm 6= 0, and cn,m(α, k) = 0 if nm = 0. Here, ε2V̂ πn,m is the approximation error

(more exactly, the linearization error) for the full aperture case, of order ε2 when
ε� 1.

The linearization of the map from the perimeter perturbation (ĥp)
+∞
p=−∞ to the

data (ân,m)+∞
n,m=−∞ is described by the linear operator Q defined by

(7) (Qĥ)n,m := ε

∞∑
p̃,p=−∞

ψ̌φrn (p̃)ψ̌φsm (p)eip̃φccp̃,p(α, k)ĥp̃+p .
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Our objective is to assess the resolving power of limited-view data in the presence
of measurement or instrument noise. The measured data can be expressed as

(8) âmeas
n,m = (Qĥ)n,m + σŴn,m + ε2V̂n,m ,

with the noise terms Ŵn,m modeled as independent standard complex circularly

symmetric Gaussian random variables (such that E[|Ŵm,n|2] = 1; E being the

expectation) and σ modeling the noise magnitude. The term ε2V̂n,m models the
linearization error and we shall focus on the case ε2 � σ so that the measurement
error is the dominant error. We therefore focus on this contribution to the error
and write with some abuse of notation:

(9) âmeas
n,m = (Qĥ)n,m + σŴn,m .

2.2. The Linear Operator. Our objective is now to identify the rim or perimeter

perturbation of the inclusion, that is the function h. As shown in [6], only ĥp
for 0 < |p| � 1/ε can be reconstructed from boundary measurements in the

linearized context, otherwise the linearization error ε2V̂n,m is too large. Therefore,

let M � 1/ε be a positive integer and suppose that ĥp = 0 for |p| ≥M .
We start by noting that the adjoint of the operator Q is

(10) (Q?â)p = ε

∞∑
j,m,n=−∞

ψ̌φrn (p− j)ψ̌φsm (j)ei(j−p)φccp−j,j(α, k) ân,m .

We moreover have

(Q?Qĥ)p = ε2
∞∑

j,m,n=−∞
ei(n+j−p)φcHφr (p− j − n)Hφs(j −m)

× cp−j,j(α, k)cn,m(α, k)ĥn+m ,

where we have introduced

Hφ(p) =

∞∑
n=−∞

ψ̌φn(p̃)ψ̌φn(p̃+ p) =
φ2

π2
sinc(φp) .(11)

In order to simplify somewhat the expressions involved in the reconstruction of
h we shall assume from now a relatively high contrast situation with k � 1 and
make the replacement:

(12) cn,m(α, k) = cn,m(α), cn,m(α) :=
−8π

α
(
α|n|+ α−|n|

) (
α|m| + α−|m|

) ,
so that we have

(Q?Qĥ)p = ε2φ
2
sφ

2
r

π4

∞∑
j,m,n=−∞

ei(n+j−p)φcsinc(φr(p− j − n))

×sinc(φs(j −m))cp−j,j(α)cn,m(α)ĥn+m .(13)
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2.3. The Full Aperture Case. We review here briefly the full aperture case with
φs = φr = π that was treated in detail in [6]. We have

(14) (Q?Qĥ)p = ε2qp(α)ĥp , qp(α) =

∞∑
j=−∞

cp−j,j(α)2 .

Compared to (13), note the diagonal character of Q?Q in the full-view case. The

least squares estimate of ĥp using âmeas is

ĥest
p =

(
(Q∗Q)−1Q∗âmeas

)
p

= ε−2qp(α)−1 (Q∗âmeas)p

= ĥp + σε−2qp(α)−1(Q∗Ŵ )p .(15)

Using

E[Ŵn,mŴn′,m′
]

= 1n(n′)1m(m′),

where 1n(n′) = 1 if n = n′ and 0 otherwise, we find

(16) E
[∣∣(Q∗Ŵ )p

∣∣2] = (Q∗Q1p)p ,

which gives using (14):

E
[∣∣(Q∗Ŵ )p

∣∣2] = ε2qp(α) ,

and we then have

(17) E
[∣∣ĥest

p − ĥp
∣∣2] = qp(α)−1σ

2

ε2
.

We can therefore conclude from (17) that in order to resolve the pth mode of h,

ĥp, we need the following resolving condition to be satisfied:

σ2

ε2
< qp(α) .

We introduce the signal-to-noise ratio SNR:

(18) SNR =
ε2

σ2
.

Using (12) we find that a mode resolving sufficient condition when α� 1 is

(19) SNR−1 <

{
32π2α2|p|−2(2|p| − 1) if |p| ≥ 1,
4π2α−2 if p = 0.

Using (12) and

(20)

∞∑
y=−∞

1

(α|y| + α−|y|)4

α→1' 2

1− α

∫ ∞
0

dx

(ex + e−x)4
=

1

12(1− α)
,

we find a mode resolving sufficient condition when α→ 1 is

(21) SNR−1 <
16π2

3(1− α)
.

We can see in particular that we have “infinite resolution” in the limit α→ 1 in

the sense that we can estimate all modes ĥp in this limit.
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When α� 1 we can estimate the modes ĥp with |p| ≤ pmax where

(22) pmax =


−∞ if SNR <

α2

4π2
,

0 if
α2

4π2
< SNR <

1

32π2
,

p if
α2

2p− 1

α−2p

32π2
< SNR <

1

2p+ 1

α−2p

32π2
, p ≥ 1 .

3. Strategies in The Partial Aperture Case

In this section we outline different approaches for solving the reconstruction
problem with limited-view data.

Using (12) and (13) we have the following lemma.

Lemma 3.1. We have

(23) (Q?Qĥ)p = ε2
∞∑

x=−∞
Hp,x(α)ĥx ,

where

Hp,x(α) =
φ2
sφ

2
r

π4

∞∑
y,z=−∞

e−izφcsinc(φrz)sinc(φs(p− x− z))

×cp−y,y(α)cp−(y+z),(y+z)−p+x(α) .(24)

As mentioned above, in the full aperture case φr = φs = π the matrix H(α)
becomes diagonal:

Hp,x(α) = qp(α)1p(x) ,

where 1p(x) = 1 if x = p and 0 otherwise, and we can obtain an estimate of
the perimeter perturbations h by a simple diagonal scaling (see Subsection 2.3).
In the limited-view case this matrix is complicated and we need to construct an
approximate inverse.

One approach to constructing such an inverse would be to use the Singular Value
Decomposition of Hp,x(α) and construct a regularized or pseudo inverse, the cutoff
or regularization is then chosen according to the noise magnitude. However, in this
case the explicit form of the Singular Value Decomposition is not known.

A second approach would be to minimize over h the discrepancy functional

1

2

∞∑
p=−∞

∣∣∣∣ ∞∑
x=−∞

Hp,x(α)ĥx − (Q?âmes)p

∣∣∣∣2 + η
( ∞∑
p=−∞

|ĥp|r
)1/r

,(25)

where âmes = (âmeas
n,m )+∞

n,m=−∞, η is a regularization parameter, and r is a positive
real. Choosing r = 1 promotes sparse minimal solutions [14]. The algorithm of Beck
and Teboulle [11] can be used in this case to efficiently compute the minimizer.

A third simpler and direct approach would be inverse filtering [21]. We can use
a diagonal scaling and construct an estimate as

(26) ĥest
p = ε−2Ap(α)(Q?âmes)p .

We will see that this strategy gives good results when α is close to one or when
the source and receiver apertures are full, but it fails when the source or receiver
aperture is partial and the inclusion is small, because any reasonable inverse must
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include off-diagonal terms in this case. Therefore, the strategy when α is small is
to look for a matrix (filter) B such that

(27) ĥest
p = ε−2

∞∑
r=−∞

Bp,r(α)(Q?âmes)r .

A good candidate for B(α) is of course the (pseudo-)inverse of the matrix H(α), in
the sense that it is the least-square solution. This is the basis of our strategy, and
we will show how to construct this pseudo-inverse in an efficient and stable way.

4. Estimation of the Perimeter Perturbation for a Large Radius
Ball

In this section we consider the regime where the interface of the conductivity
inclusion is located just below the boundary of the background domain. We show
that an inverse filtering approach with a diagonal scaling allows us to estimate the
shape perturbations. Moreover, we prove that one can resolve for any fixed SNR
a sufficiently shallow shape perturbation on the overlap of the source and receiver
apertures.

We consider the approach (26). Following the inverse filtering approach (26),
the estimator

hest(θ) = ε−2
∞∑

p=−∞
Ap(α)(Q?âmes)pe

ipθ ,(28)

has mean

E[hest(θ)] =
φ2
sφ

2
r

π4

∞∑
p,x,y,z=−∞

Ap(α)e−izφcsinc(φrz)sinc(φsx)

× cp−y,y(α)cp−y−z,y−x(α)ĥp−x−ze
ipθ .(29)

The fluctuations due to measurement error are

eest(θ) = hest(θ)− E[hest(θ)]

=
σ

ε2

∞∑
p=−∞

Ap(α)(Q?Ŵ )pe
ipθ

=
σ

ε

φsφr
π2

∞∑
j,n,m,p=−∞

Ap(α)sinc(nπ − (p− j)φr)sinc(mπ − jφs)

×ei(j−p)φccp−j,j(α)Ŵn,me
ipθ .(30)

In this section we consider the regime when the interface is located just below the
surface α → 1. We will prove that we can resolve for any fixed SNR a sufficiently
shallow perimeter perturbation of a conductivity inclusion on the overlap of the
source and receiver apertures.

It turns out that the operator Q?Q is (approximately) diagonal on the overlap
of the source and receiver arrays. The following result holds.

Lemma 4.1. When α→ 1, we have
∞∑

p=−∞
(Q?Qĥ)pe

ipθ = ε2φrφs
8

1− α

{
h(θ) +O(1− α) if θ ∈ χφr,φs,φc ,
O(1− α) otherwise,
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where χφr,φs,φc is the overlap of the source aperture and the receiver aperture:

χφr,φs,φc = {θ ∈ [−π, π] | θ ∈ [−φs, φs] modulo 2π and θ ∈ [φc − φr, φc + φr] modulo 2π} .

Proof. We consider (23-24) and replace the sinc functions by sinc(s/2) =
∫ 1/2

−1/2
eisudu.

We get via the change of variables n = p− (y + z);m = (y + z)− p+ x:

∞∑
p=−∞

(Q?Qĥ)pe
ipθ =

ε2φ2
rφ

2
s

π4

∞∑
m,n=−∞

∫ 1/2

−1/2

du

∫ 1/2

−1/2

du′
∞∑

p=−∞
eip(−φc+2φru+θ)

×
∞∑

y=−∞
eiy(φc−2φru+2φsu

′)ein(φc−2φru)e−2imφsu
′
cn,m(α)cp−y,y(α)ĥn+m .

When α→ 1 we can replace cp−y,y(α) by −2π up to a factor (1− α) and we make
use of the Poisson summation formula

∑
p e

ipθ = 2π
∑
k δ(θ − k2π) to arrive at

∞∑
p=−∞

(Q?Qĥ)pe
ipθ = −2ε2φrφs

π
1χφr,φs,φc (θ)

×
∞∑

m,n=−∞
ei(n+m)θcn,m(α)ĥn+m

(
1 +O(1− α)

)
.

By substituting the expression (12) for cn,m(α) and by using that

∞∑
y=−∞

1

(α|y| + α−|y|)2

α→1' 2

1− α

∫ ∞
0

dx

(ex + e−x)2
=

1

2(1− α)
,

we get the desired result. �

The previous lemma gives the form of the inverse filter that we should use. The
following proposition holds.

Proposition 4.2. If we choose

Ap(α) =
1− α
8φrφs

,

then the estimator (28) satisfies in the regime α→ 1

hest(θ) =

{
h(θ) +O(1− α) if θ ∈ χφr,φs,φc ,
O(1− α) otherwise.

Furthermore, we obtain for fixed SNR defined by (18) that

E[|êest
p |2] = SNR−1 |χφr,φs,φc |(1− α)

24πφrφs

(
1 +O(1− α)

)
α→1−→ 0 ,

where |χφr,φs,φc | is the angular length of the overlap of the source aperture and the
receiver aperture.
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Proof. We have in the regime α→ 1 using (11) and (30):

E[|êest
p |2] =

σ2

ε2
Ap(α)2

∞∑
j,l,m,n=−∞

ψ̌φrn (p− j)ψ̌φsm (j)ei(j−p)φccp−j,j(α)

×ψ̌φrn (p− l)ψ̌φsm (l)e−i(l−p)φccp−l,l(α)

=
σ2

ε2

φ2
rφ

2
s

π4

( ∞∑
z=−∞

e−izφcsinc(zφr)sinc(zφs)
)
Ap(α)2

×
( ∞∑
y=−∞

64π2

(α|y| + α−|y|)4

)(
1 +O(1− α)

)
.

Using (20) and computing the sum over z:
∞∑

z=−∞
e−izφcsinc(zφr)sinc(zφs) =

π|χφr,φs,φc |
2φrφs

,

we get the desired result. �

Proposition 4.2 shows that a sufficiently shallow perimeter perturbation on the
aperture overlap can be resolved for any SNR.

5. Estimation of the Perimeter Perturbation for a Small Radius
Ball

In this section we consider the case where the inclusion is of small radius. Because
of the mode coupling in this case, we perform a matrix filtering approach to get
the lowest modes of the shape perturbation in this case.

5.1. The Case of Full Receiver and Partial Source Apertures. In this sub-
section we consider the case when the receiver aperture is full so that φr = π. The
case of partial receiver and full source apertures can be treated in exactly the same
manner.

In the absence of measurement noise, we have âmes = Qĥ and

(31) (Q?âmes)p =
ε2φ2

s

π2

∞∑
x=−∞

sinc(φsx)Xp,x(α)ĥp−x ,

where

Xp,x(α) =

∞∑
y=−∞

cp−y,y(α)cp−y,y−x(α) .

If we consider that (31) is an estimate ĥest
p of ĥp, then we can write that its inverse

Fourier transform is an estimate of h(θ) that has the form

hest(θ) =

∞∑
p=−∞

(Q?âmes)pe
ipφ

=
ε2φ2

s

π2

∫ π

−π
K(θ, θ′)h(θ′)dθ′ ,(32)

where the imaging kernel (parameterized by φs and α) is given by

K(θ, θ′) =
1

4πφs

∫ φs

−φs
X̌(θ − θ′, v + θ′;α)dv ,(33)
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Figure 1. Level curves of the imaging kernel K(θ, θ′) for φs = π/5
and for α = 0.9 (left), α = 0.5 (center), and α = 0.2 (right).

for

X̌(θ, θ′;α) =

∞∑
p,x=−∞

Xp,x(α)ei(pθ+xθ
′) .

Note that an ideal case with perfect estimation would mean that the imaging kernel
is proportional to K(θ, θ′) = δ(θ − θ′).

In Figure 1 we plot (up to a normalization constant) the imaging kernel K(θ, θ′)
for φs = π/5 and for α = 0.9, 0.5, 0.2. One can observe that, when α is close to
one, the kernel is close to 1[−φs,φs](θ)δ(θ − θ′), which means that the perturbation
h(θ) can be estimated with accuracy over the source aperture, as predicted by
Proposition 4.2. One can also observe that, when α is much smaller than one,
the imaging kernel becomes bad, which is related to the fact that the information
provided by the measurements is reduced. Figure 2 illustrates this by plotting the
singular value spectrum of the Fourier transform K̂p,p′ of the imaging kernel for
α = 0.9, 0.5, 0.2, up to a common normalization factor. Note that the first singular
values increase for very small radii α, corresponding to enhanced resolvability for
the first modes for very small radii. In Figure 3 we show the first left singular
vector of the Fourier transform K̂p,p′ of the imaging kernel for φs = π/5 and for
α = 0.9, 0.5, 0.2. Note that for small radii information from only the leading modes
can be associated with the first singular vector while for larger radii the first singular
vector depends on a combination of modes.

It is thus clear that in the regime of small radii α only the lowest modes can be
resolved, even with small amounts of noise, and that the estimation should involve
a matrix filter B as in (27). Thus, to get a measure of resolution noise needs to be
taken into account. We next carry out such an analysis that discusses these issues
in detail and also the form of the matrix filter for the lowest modes in the situation
with a small inclusion.
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Figure 2. The singular values of the Fourier transform
(K̂p,p′)∞p,p′=−∞ of the imaging kernel for φs = π/5 and for α = 0.9

(circles), α = 0.5 (crosses), and α = 0.2 (stars).
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Figure 3. The first left singular vectors of the Fourier transform
(K̂p,p′)∞p,p′=−∞ of the imaging kernel for φs = π/5 and for α = 0.9

(circles), α = 0.5 (crosses), and α = 0.2 (stars). We plot the
moduli of the coefficients of the vectors.

When α� 1, we can expand Xp,x(α) in terms of α and find

(Q?âmes)0 =
64ε2φ2

s

α2

[ 1

16
ĥ0 +

α

8
sinc(φs)(ĥ1 + ĥ−1)

+
α2

8
sinc(2φs)(ĥ2 + ĥ−2) +O(α3)

]
,(34)

(Q?âmes)1 =
64ε2φ2

s

α2

[α2

2
ĥ1 +

α

8
sinc(φs)ĥ0

+
α2

4
sinc(2φs)ĥ−1 +O(α3)

]
,(35)

and

(Q?âmes)−1 = (Q?âmes)1, (Q?âmes)p = O(αp−2) for all p ≥ 2.
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It is important to note the presence of the term α
8 sinc(φs)ĥ0 in (Q?âmes)1, which

is much larger (when φs < π) than α2

2 ĥ1. As a consequence, ĥ1 cannot be estimated
by looking at (Q?âmes)±1 only. It is therefore critical to use an inverse filter with
off-diagonal terms.

In order to estimate ĥ0, we first propose to look for an estimator of the form

ĥ
est,(1)
0 = ε−2B

(1)
0,0(α)(Q?âmes)0 ,(36)

and to identify the best coefficient B
(1)
0,0 (in the least square sense). From (34) we

find that

B
(1)
0,0 =

α2

4φ2
s

,

which yields

ĥ
est,(1)
0 = ĥ0 +O(α) .(37)

In order to estimate ĥp, p = 0, 1, we may look for estimators of the form

ĥest,(2)
p = ε−2

1∑
l=−1

B
(2)
p,l (α)(Q?âmes)l,(38)

and identify the best coefficients (B
(2)
p,l )p=0,1,l=−1,0,1 (in the least square sense).

From (35) we get

B
(2)
0,0 =

α2

64φ2
s

16(2 + sinc(2φs))

2− 2sinc2(φs) + sinc(2φs)
,

B
(2)
0,−1 = − α2

64φ2
s

1

α

8sinc(φs)

2− 2sinc2(φs) + sinc(2φs)
,

B
(2)
0,1 = − α2

64φ2
s

1

α

8sinc(φs)

2− 2sinc2(φs) + sinc(2φs)
,

B
(2)
1,1 =

α2

64φ2
s

2

α2

[
(2− 2sinc2(φs) + sinc(2φs))

−1 + (2− sinc(2φs))
−1
]
,

B
(2)
1,−1 =

α2

64φ2
s

2

α2

[
(2− 2sinc2(φs) + sinc(2φs))

−1 − (2− sinc(2φs))
−1
]
,

B
(2)
1,0 = − α2

64φ2
s

8

α

sinc(φs)

2− 2sinc2(φs) + sinc(2φs)
,

and hence,

ĥ
est,(2)
0 = ĥ0 +O(α2) ,

ĥ
est,(2)
1 = ĥ1 +O(α) .

We have improved the accuracy of the estimate of ĥ0 with respect to the approxi-

mation error in O(α) in (37), and we have derived an estimation of ĥ1 of the same

accuracy as the estimation of ĥ0 in (37).
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It is of course possible to implement this method beyond p = 1 and to identify

the matrix B(p+1) = (B
(p+1)
j,l )j=0,...,p,l=−p,...,p so that

ĥ
est,(p+1)
j = ε−2

p∑
l=−p

B
(p+1)
j,l (α)(Q?âmes)l , j = 0, . . . , p ,

and

(39) ĥ
est,(p+1)
j = ĥj +O(αp+1−j), j = 0, . . . , p .

Assuming that ĥj = 0 for j = −(p− 1), . . . , (p− 1), we obtain

(Q?âmes)p = 64ε2φ2
sα

2p−2
[
(p− 1

2
)ĥp +

1

4
sinc(2pφs)ĥ−p +O(α)

]
,

and therefore we can estimate ĥp by the formula

(40) ĥest
p = ε−2

[
Bp,p(α)(Q?âmes)p +Bp,−p(α)(Q?âmes)−p

]
,

where

Bp,p =
α2−2p

64φ2
s

(p− 1/2)
(

(p− 1

2
)2 − 1

16
sinc2(2pφs)

)−1

,

Bp,−p = −α
2−2p

64φ2
s

sinc(2pφs)

4

(
(p− 1

2
)2 − 1

16
sinc2(2pφs)

)−1

.

As before, the estimation of the pth mode is a first-order estimation in α:

ĥest
p = ĥp +O(α) .

5.2. Noise Constrained Resolution. In the general case φr, φs ∈ (0, π], we have
using (13) and (16)

E
[
|(Q?Ŵ )p|2

]
= (Q?Q1p)p

= ε2φ
2
sφ

2
r

π4

∞∑
j,j′=−∞

sinc((j − j′)φr)sinc((j − j′)φs)ei(j−j
′)φc

×cp−j,j(α)cp−j′,j′(α) .

In the regime α→ 0, we find

E[|(Q?Ŵ )0|2] = ε2 4φ2
sφ

2
r

π2
α−2

[
1 +O(α)

]
,

E[|(Q?Ŵ )1|2] = ε2 32φ2
sφ

2
r

π2

[
sinc(φr)sinc(φs) cos(φc) + 1

][
1 +O(α)

]
,

and

E[|(Q?Ŵ )p|2] = ε2 32φ2
sφ

2
r

π2
α2p−2

[
sinc(pφr)sinc(pφs) cos(pφc)

+4

p−1∑
j=1

(p− j)sinc(jφr)sinc(jφs) cos(jφc) + (2p− 1)
][

1 +O(α)
]
.(41)

To be complete, we should add that the coefficients are correlated. For instance

E[(Q?Ŵ )1(Q?Ŵ )0] = ε2 8φ2
sφ

2
r

π2
α−1

[
sinc(φs) + sinc(φr)e

−iφc
][

1 +O(α)
]
.
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Moreover, for any p ≥ 1, we have

E[(Q?Ŵ )p(Q?Ŵ )−p] = ε2 16φ2
sφ

2
r

π2
α2p−2

[
sinc(2pφs) + sinc(2pφr)e

−2ipφc

+4

2p−1∑
j=1

(
j ∧ (2p− j) ∧ (p− 1

2
)

)
sinc((j − 2p)φr)sinc(jφs)e

i(j−2p)φc
][

1 +O(α)
]
,(42)

where a ∧ b is a shorthand for min(a, b).
We now come back to the case of full receiver and partial source apertures φr = π,

φs ∈ (0, π]. When we use estimator (27), the error due to the measurement noise
is given by

êest
p = ĥest

p − E[ĥest
p ] = ε−2σ

∞∑
r=−∞

Bp,r(α)(Q?Ŵ )r .

When the receiver aperture is full so that φr = π, we have the following important
results:

(i) If we estimate ĥ0 with estimator (36), then the measurement error has
variance

(43) E[|êest
0 |2] =

σ2

ε2

α2

4φ2
s

,

while the approximation error is of order O(α).

(ii) If we estimate ĥ0 with estimator (38), then the measurement error has
variance

(44) E[|êest
0 |2] =

σ2

ε2

α2

4φ2
s

2 + sinc(2φs)

2− 2sinc2(φs) + sinc(2φs)
,

while the approximation error is of order O(α2). By comparing (43) and
(44) we can see that we have a significant gain in the approximation error
without losing stability.

(iii) If we estimate ĥ1 with estimator (38), then the measurement error has
variance

(45) E[|êest
1 |2] =

σ2

ε2

1

32φ2
s

( 2 + sinc(2φs)(
2− 2sinc2(φs) + sinc(2φs)

)2 +
1

2− sinc(2φs)

)
,

while the approximation error is of order O(α). By comparing (44) and
(45) we can see that the estimations of the high modes are more sensitive
to measurement noise than those of the low modes.

(iv) More generally, if we estimate ĥp with (40), then we find that

(46) E[|êest
p |2] =

σ2

ε2
α2−2p (2p− 1)

32φ2
s

(
(2p− 1)2 − 1

4 sinc2(2pφs)
) ,

while the approximation error, ĥest
p − ĥp, is of order O(α).

This yields the following proposition.

Proposition 5.1. Suppose that α � 1 and φr = π. Let SNR be defined by (18).

It is possible to estimate the zero-th order Fourier mode ĥ0 if

α2

4φ2
s

< SNR .
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Let pmax be the highest Fourier mode of h that can be resolved. The sufficient
resolution constraint

1

2pmax − 1

α2−2pmax

32φ2
s

< SNR

holds.

When φs = π Proposition 5.1 gives the same result as (22). Note that the estima-
tion of the zero-th order Fourier mode corresponds to the estimation of the volume
of the perturbed inclusion. The estimation of the first Fourier mode corresponds
to the estimation of the eccentricity of the equivalent ellipse which gives the same
first-order boundary perturbations. The higher modes correspond to more refined
details. Proposition 5.1 shows that for large SNR we have

pmax <
log(SNR)

−2 log(α)
.

Thus, the mode number bound becomes small for small inclusions. However, given
the unperturbed inclusion radius, α, we find that the following resolution measure
defined by

λ? :=
2πα

pmax
,(47)

is approximately

λ? ∼ −4πα log(α)

log(SNR)
,

and therefore, the resolution improves for small inclusions due to the reduction in
scale for fixed p with reduced radius α.

5.3. The Case of Partial Source and Partial Receiver. In this subsection we
consider the case when the receiver aperture and the source aperture are partial,
so that φr, φs ∈ (0, π). In the absence of measurement noise, we have

(Q?âmes)p =
ε2φ2

sφ
2
r

π4

∞∑
j,m,n=−∞

ei(n+j−p)φcsinc(φs(j −m))sinc(φr(j + n− p))

×cp−j,j(α)cn,m(α)ĥn+m .

When α� 1, we can readily get

(Q?âmes)0 =
64ε2φ2

sφ
2
r

π2α2

[ 1

16
ĥ0 +

α

8
(eiφcsinc(φr) + sinc(φs))ĥ1

+
α

8
(e−iφcsinc(φr) + sinc(φs))ĥ−1 +O(α2)

]
,

(Q?âmes)1 =
64ε2φ2

sφ
2
r

π2α2

[α2

2

(
1 + sinc(φr)sinc(φs) cos(φc)

)
ĥ1

+
α2

4

(
sinc(2φs) + 2sinc(φs)sinc(φr)e

−iφc + sinc(2φr)e
−2iφc

)
ĥ−1

+
α

8

(
sinc(φs) + sinc(φr)e

−iφc
)
ĥ0 +O(α3)

]
,

and

(Q?âmes)−1 = (Q?âmes)1, (Q?âmes)p = O(αp−2) for all p ≥ 2.
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Similarly, if ĥj = 0 for |j| ≤ p− 1, then

(Q?âmes)p = ε2 64φ2
sφ

2
r

π2
α2p−2

[
Qp,pĥp +Qp,−pĥ−p

][
1 +O(α)

]
,

Qp,p =
1

2
sinc(pφr)sinc(pφs) cos(pφc)

+2

p−1∑
j=1

(p− j)sinc(jφr)sinc(jφs) cos(jφc) + (p− 1

2
) ,

Qp,−p =
1

4
sinc(2pφr)e

−2ipφc +
1

4
sinc(2pφs)

+

2p−1∑
j=1

j ∧ (2p− j) ∧ (p− 1

2
)sinc((j − 2p)φr)sinc(jφs)e

i(j−2p)φc .

Using (41) and (42) this gives the following proposition.

Proposition 5.2. Suppose that α� 1. Let SNR be defined by (18). It is possible

to estimate the zero-th order Fourier mode ĥ0 if

π2α2

4φ2
sφ

2
r

< SNR .

Let pmax be the highest Fourier mode of h that can be resolved. The sufficient
resolution constraint

π2

32φ2
sφ

2
r

α2−2pmax

2pmax − 1
< SNR

holds.

We see from Proposition 5.2 that, given SNR and α, the mode number bound
becomes small for small apertures of the source and receiver arrays, or equivalently,
the resolution measure, λ? defined by (47), becomes large. Moreover, the fact that
the two arrays are superposed plays no role in the case of small inclusions, only
the apertures are important, in contrast to the case of an inclusion with a large
diameter studied in Section 4.

6. Conclusion

In this paper we have established resolution and stability estimates for the lin-
earized conductivity problem with limited-view data in the presence of measure-
ment noise. We have shown that in the shallow probing regime we can resolve
for any fixed SNR a sufficiently shallow perimeter perturbation of the conductivity
inclusion on the overlap of the source and receiver apertures. This has been done
using a filter with a diagonal scaling. In the general case, such a filter would not
lead correct images. In the deep probing regime, we have provided a matrix filter
in order to estimate the lowest modes of the shape perturbations. We emphasize
that the conclusions of this paper as those of [6] hold only under the assumption
that the noise is measurement noise. For medium noise or clutter, the situation is
quite different. This will be the subject of a forthcoming investigation. Another
challenging problem is to extend the present resolution analysis to acoustic and
elastic wave propagation problems. In view of [4], [5], and [7] similar resolution
estimations may be expected to hold in the acoustic and elastic cases.
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